Sparse Estimation with Math and R PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Sparse Estimation with Math and R PDF full book. Access full book title Sparse Estimation with Math and R by Joe Suzuki. Download full books in PDF and EPUB format.

Uncategorized

Worth A Thousand Words

Sparse Estimation with Math and R PDF Author: Joe Suzuki
Publisher: Springer Nature
ISBN: 9811614466
Category : Computers
Languages : en
Pages : 234

Get Book

Book Description
The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than knowledge and experience. This textbook approaches the essence of sparse estimation by considering math problems and building R programs. Each chapter introduces the notion of sparsity and provides procedures followed by mathematical derivations and source programs with examples of execution. To maximize readers’ insights into sparsity, mathematical proofs are presented for almost all propositions, and programs are described without depending on any packages. The book is carefully organized to provide the solutions to the exercises in each chapter so that readers can solve the total of 100 exercises by simply following the contents of each chapter. This textbook is suitable for an undergraduate or graduate course consisting of about 15 lectures (90 mins each). Written in an easy-to-follow and self-contained style, this book will also be perfect material for independent learning by data scientists, machine learning engineers, and researchers interested in linear regression, generalized linear lasso, group lasso, fused lasso, graphical models, matrix decomposition, and multivariate analysis. This book is one of a series of textbooks in machine learning by the same author. Other titles are: - Statistical Learning with Math and R (https://www.springer.com/gp/book/9789811575679) - Statistical Learning with Math and Python (https://www.springer.com/gp/book/9789811578762) - Sparse Estimation with Math and Python

Sparse Estimation with Math and R

Sparse Estimation with Math and R PDF Author: Joe Suzuki
Publisher: Springer Nature
ISBN: 9811614466
Category : Computers
Languages : en
Pages : 234

View

Book Description
The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than knowledge and experience. This textbook approaches the essence of sparse estimation by considering math problems and building R programs. Each chapter introduces the notion of sparsity and provides procedures followed by mathematical derivations and source programs with examples of execution. To maximize readers’ insights into sparsity, mathematical proofs are presented for almost all propositions, and programs are described without depending on any packages. The book is carefully organized to provide the solutions to the exercises in each chapter so that readers can solve the total of 100 exercises by simply following the contents of each chapter. This textbook is suitable for an undergraduate or graduate course consisting of about 15 lectures (90 mins each). Written in an easy-to-follow and self-contained style, this book will also be perfect material for independent learning by data scientists, machine learning engineers, and researchers interested in linear regression, generalized linear lasso, group lasso, fused lasso, graphical models, matrix decomposition, and multivariate analysis. This book is one of a series of textbooks in machine learning by the same author. Other titles are: - Statistical Learning with Math and R (https://www.springer.com/gp/book/9789811575679) - Statistical Learning with Math and Python (https://www.springer.com/gp/book/9789811578762) - Sparse Estimation with Math and Python

Sparse Estimation with Math and Python

Sparse Estimation with Math and Python PDF Author: Joe Suzuki
Publisher: Springer Nature
ISBN: 9811614385
Category : Computers
Languages : en
Pages : 246

View

Book Description
The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than knowledge and experience. This textbook approaches the essence of sparse estimation by considering math problems and building Python programs. Each chapter introduces the notion of sparsity and provides procedures followed by mathematical derivations and source programs with examples of execution. To maximize readers’ insights into sparsity, mathematical proofs are presented for almost all propositions, and programs are described without depending on any packages. The book is carefully organized to provide the solutions to the exercises in each chapter so that readers can solve the total of 100 exercises by simply following the contents of each chapter. This textbook is suitable for an undergraduate or graduate course consisting of about 15 lectures (90 mins each). Written in an easy-to-follow and self-contained style, this book will also be perfect material for independent learning by data scientists, machine learning engineers, and researchers interested in linear regression, generalized linear lasso, group lasso, fused lasso, graphical models, matrix decomposition, and multivariate analysis. This book is one of a series of textbooks in machine learning by the same Author. Other titles are: Statistical Learning with Math and R (https://www.springer.com/gp/book/9789811575679) Statistical Learning with Math and Pyth (https://www.springer.com/gp/book/9789811578762) Sparse Estimation with Math and R

Kernel Methods for Machine Learning with Math and Python

Kernel Methods for Machine Learning with Math and Python PDF Author: Joe Suzuki
Publisher: Springer Nature
ISBN: 9811904014
Category : Computers
Languages : en
Pages : 208

View

Book Description
The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than relying on knowledge or experience. This textbook addresses the fundamentals of kernel methods for machine learning by considering relevant math problems and building Python programs. The book’s main features are as follows: The content is written in an easy-to-follow and self-contained style. The book includes 100 exercises, which have been carefully selected and refined. As their solutions are provided in the main text, readers can solve all of the exercises by reading the book. The mathematical premises of kernels are proven and the correct conclusions are provided, helping readers to understand the nature of kernels. Source programs and running examples are presented to help readers acquire a deeper understanding of the mathematics used. Once readers have a basic understanding of the functional analysis topics covered in Chapter 2, the applications are discussed in the subsequent chapters. Here, no prior knowledge of mathematics is assumed. This book considers both the kernel for reproducing kernel Hilbert space (RKHS) and the kernel for the Gaussian process; a clear distinction is made between the two.

Kernel Methods for Machine Learning with Math and R

Kernel Methods for Machine Learning with Math and R PDF Author: Joe Suzuki
Publisher: Springer
ISBN: 9789811903977
Category : Computers
Languages : en
Pages : 196

View

Book Description
The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than relying on knowledge or experience. This textbook addresses the fundamentals of kernel methods for machine learning by considering relevant math problems and building R programs. The book’s main features are as follows: The content is written in an easy-to-follow and self-contained style. The book includes 100 exercises, which have been carefully selected and refined. As their solutions are provided in the main text, readers can solve all of the exercises by reading the book. The mathematical premises of kernels are proven and the correct conclusions are provided, helping readers to understand the nature of kernels. Source programs and running examples are presented to help readers acquire a deeper understanding of the mathematics used. Once readers have a basic understanding of the functional analysis topics covered in Chapter 2, the applications are discussed in the subsequent chapters. Here, no prior knowledge of mathematics is assumed. This book considers both the kernel for reproducing kernel Hilbert space (RKHS) and the kernel for the Gaussian process; a clear distinction is made between the two.

Kernel Methods for Machine Learning with Math and R

Kernel Methods for Machine Learning with Math and R PDF Author: Joe Suzuki
Publisher: Springer Nature
ISBN: 9811903980
Category :
Languages : en
Pages :

View

Book Description


Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery Problems

Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery Problems PDF Author: Vladimir Koltchinskii
Publisher: Springer
ISBN: 3642221475
Category : Mathematics
Languages : en
Pages : 254

View

Book Description
The purpose of these lecture notes is to provide an introduction to the general theory of empirical risk minimization with an emphasis on excess risk bounds and oracle inequalities in penalized problems. In recent years, there have been new developments in this area motivated by the study of new classes of methods in machine learning such as large margin classification methods (boosting, kernel machines). The main probabilistic tools involved in the analysis of these problems are concentration and deviation inequalities by Talagrand along with other methods of empirical processes theory (symmetrization inequalities, contraction inequality for Rademacher sums, entropy and generic chaining bounds). Sparse recovery based on l_1-type penalization and low rank matrix recovery based on the nuclear norm penalization are other active areas of research, where the main problems can be stated in the framework of penalized empirical risk minimization, and concentration inequalities and empirical processes tools have proved to be very useful.

Recent Advances in Computational Optimization

Recent Advances in Computational Optimization PDF Author: Stefka Fidanova
Publisher: Springer
ISBN: 3319401327
Category : Technology & Engineering
Languages : en
Pages : 303

View

Book Description
This volume is a comprehensive collection of extended contributions from the Workshop on Computational Optimization 2015. It presents recent advances in computational optimization. The volume includes important real life problems like parameter settings for controlling processes in bioreactor, control of ethanol production, minimal convex hill with application in routing algorithms, graph coloring, flow design in photonic data transport system, predicting indoor temperature, crisis control center monitoring, fuel consumption of helicopters, portfolio selection, GPS surveying and so on. It shows how to develop algorithms for them based on new metaheuristic methods like evolutionary computation, ant colony optimization, constrain programming and others. This research demonstrates how some real-world problems arising in engineering, economics, medicine and other domains can be formulated as optimization problems.

High-Dimensional Covariance Estimation

High-Dimensional Covariance Estimation PDF Author: Mohsen Pourahmadi
Publisher: John Wiley & Sons
ISBN: 1118034295
Category : Computers
Languages : en
Pages : 184

View

Book Description
"Focusing on methodology and computation more than on theorems and proofs, this book provides computationally feasible and statistically efficient methods for estimating sparse and large covariance matrices of high-dimensional data. Extensive in breadth and scope, it features ample applications to a number of applied areas, including business and economics, computer science, engineering, and financial mathematics; recognizes the important and significant contributions of longitudinal and spatial data; and includes various computer codes in R throughout the text and on an author-maintained web site"--

Sampling Theory

Sampling Theory PDF Author: Yonina C. Eldar
Publisher: Cambridge University Press
ISBN: 1107003393
Category : Computers
Languages : en
Pages : 836

View

Book Description
A comprehensive guide to sampling for engineers, covering the fundamental mathematical underpinnings together with practical engineering principles and applications.

Academic Press Library in Signal Processing, Volume 7

Academic Press Library in Signal Processing, Volume 7 PDF Author:
Publisher: Academic Press
ISBN: 0128118881
Category : Technology & Engineering
Languages : en
Pages : 650

View

Book Description
Academic Press Library in Signal Processing, Volume 7: Array, Radar and Communications Engineering is aimed at university researchers, post graduate students and R&D engineers in the industry, providing a tutorial-based, comprehensive review of key topics and technologies of research in Array and Radar Processing, Communications Engineering and Machine Learning. Users will find the book to be an invaluable starting point to their research and initiatives. With this reference, readers will quickly grasp an unfamiliar area of research, understand the underlying principles of a topic, learn how a topic relates to other areas, and learn of research issues yet to be resolved. Presents a quick tutorial of reviews of important and emerging topics of research Explores core principles, technologies, algorithms and applications Edited and contributed by international leading figures in the field Includes comprehensive references to journal articles and other literature upon which to build further, more detailed knowledge