Python Machine Learning Cookbook PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Python Machine Learning Cookbook PDF full book. Access full book title Python Machine Learning Cookbook by Giuseppe Ciaburro. Download full books in PDF and EPUB format.

Uncategorized

Worth A Thousand Words

Python Machine Learning Cookbook PDF Author: Giuseppe Ciaburro
Publisher: Packt Publishing Ltd
ISBN: 1789800757
Category : Computers
Languages : en
Pages : 642

Get Book

Book Description
Discover powerful ways to effectively solve real-world machine learning problems using key libraries including scikit-learn, TensorFlow, and PyTorch Key Features Learn and implement machine learning algorithms in a variety of real-life scenarios Cover a range of tasks catering to supervised, unsupervised and reinforcement learning techniques Find easy-to-follow code solutions for tackling common and not-so-common challenges Book Description This eagerly anticipated second edition of the popular Python Machine Learning Cookbook will enable you to adopt a fresh approach to dealing with real-world machine learning and deep learning tasks. With the help of over 100 recipes, you will learn to build powerful machine learning applications using modern libraries from the Python ecosystem. The book will also guide you on how to implement various machine learning algorithms for classification, clustering, and recommendation engines, using a recipe-based approach. With emphasis on practical solutions, dedicated sections in the book will help you to apply supervised and unsupervised learning techniques to real-world problems. Toward the concluding chapters, you will get to grips with recipes that teach you advanced techniques including reinforcement learning, deep neural networks, and automated machine learning. By the end of this book, you will be equipped with the skills you need to apply machine learning techniques and leverage the full capabilities of the Python ecosystem through real-world examples. What you will learn Use predictive modeling and apply it to real-world problems Explore data visualization techniques to interact with your data Learn how to build a recommendation engine Understand how to interact with text data and build models to analyze it Work with speech data and recognize spoken words using Hidden Markov Models Get well versed with reinforcement learning, automated ML, and transfer learning Work with image data and build systems for image recognition and biometric face recognition Use deep neural networks to build an optical character recognition system Who this book is for This book is for data scientists, machine learning developers, deep learning enthusiasts and Python programmers who want to solve real-world challenges using machine-learning techniques and algorithms. If you are facing challenges at work and want ready-to-use code solutions to cover key tasks in machine learning and the deep learning domain, then this book is what you need. Familiarity with Python programming and machine learning concepts will be useful.

Python Machine Learning Cookbook

Python Machine Learning Cookbook PDF Author: Giuseppe Ciaburro
Publisher: Packt Publishing Ltd
ISBN: 1789800757
Category : Computers
Languages : en
Pages : 642

View

Book Description
Discover powerful ways to effectively solve real-world machine learning problems using key libraries including scikit-learn, TensorFlow, and PyTorch Key Features Learn and implement machine learning algorithms in a variety of real-life scenarios Cover a range of tasks catering to supervised, unsupervised and reinforcement learning techniques Find easy-to-follow code solutions for tackling common and not-so-common challenges Book Description This eagerly anticipated second edition of the popular Python Machine Learning Cookbook will enable you to adopt a fresh approach to dealing with real-world machine learning and deep learning tasks. With the help of over 100 recipes, you will learn to build powerful machine learning applications using modern libraries from the Python ecosystem. The book will also guide you on how to implement various machine learning algorithms for classification, clustering, and recommendation engines, using a recipe-based approach. With emphasis on practical solutions, dedicated sections in the book will help you to apply supervised and unsupervised learning techniques to real-world problems. Toward the concluding chapters, you will get to grips with recipes that teach you advanced techniques including reinforcement learning, deep neural networks, and automated machine learning. By the end of this book, you will be equipped with the skills you need to apply machine learning techniques and leverage the full capabilities of the Python ecosystem through real-world examples. What you will learn Use predictive modeling and apply it to real-world problems Explore data visualization techniques to interact with your data Learn how to build a recommendation engine Understand how to interact with text data and build models to analyze it Work with speech data and recognize spoken words using Hidden Markov Models Get well versed with reinforcement learning, automated ML, and transfer learning Work with image data and build systems for image recognition and biometric face recognition Use deep neural networks to build an optical character recognition system Who this book is for This book is for data scientists, machine learning developers, deep learning enthusiasts and Python programmers who want to solve real-world challenges using machine-learning techniques and algorithms. If you are facing challenges at work and want ready-to-use code solutions to cover key tasks in machine learning and the deep learning domain, then this book is what you need. Familiarity with Python programming and machine learning concepts will be useful.

Python Machine Learning Cookbook - Second Edition

Python Machine Learning Cookbook - Second Edition PDF Author: Giuseppe Ciaburro
Publisher:
ISBN:
Category :
Languages : en
Pages : 642

View

Book Description
Discover powerful ways to effectively solve real-world machine learning problems using key libraries including scikit-learn, TensorFlow, and PyTorch Key Features Learn and implement machine learning algorithms in a variety of real-life scenarios Cover a range of tasks catering to supervised, unsupervised and reinforcement learning techniques Find easy-to-follow code solutions for tackling common and not-so-common challenges Book Description This eagerly anticipated second edition of the popular Python Machine Learning Cookbook will enable you to adopt a fresh approach to dealing with real-world machine learning and deep learning tasks. With the help of over 100 recipes, you will learn to build powerful machine learning applications using modern libraries from the Python ecosystem. The book will also guide you on how to implement various machine learning algorithms for classification, clustering, and recommendation engines, using a recipe-based approach. With emphasis on practical solutions, dedicated sections in the book will help you to apply supervised and unsupervised learning techniques to real-world problems. Toward the concluding chapters, you will get to grips with recipes that teach you advanced techniques including reinforcement learning, deep neural networks, and automated machine learning. By the end of this book, you will be equipped with the skills you need to apply machine learning techniques and leverage the full capabilities of the Python ecosystem through real-world examples. What you will learn Use predictive modeling and apply it to real-world problems Explore data visualization techniques to interact with your data Learn how to build a recommendation engine Understand how to interact with text data and build models to analyze it Work with speech data and recognize spoken words using Hidden Markov Models Get well versed with reinforcement learning, automated ML, and transfer learning Work with image data and build systems for image recognition and biometric face recognition Use deep neural networks to build an optical character recognition system Who this book is for This book is for data scientists, machine learning developers, deep learning enthusiasts and Python programmers who want to solve real-world challenges using machine-learning techniques and algorithms. If you are facing challenges at work and want ready-to-use code solutions to cover key tasks in machine learning and the deep learning domain, then this book is w ...

TensorFlow Machine Learning Cookbook

TensorFlow Machine Learning Cookbook PDF Author: Nick McClure
Publisher: Packt Publishing Ltd
ISBN: 1786466309
Category : Computers
Languages : en
Pages : 370

View

Book Description
Explore machine learning concepts using the latest numerical computing library — TensorFlow — with the help of this comprehensive cookbook About This Book Your quick guide to implementing TensorFlow in your day-to-day machine learning activities Learn advanced techniques that bring more accuracy and speed to machine learning Upgrade your knowledge to the second generation of machine learning with this guide on TensorFlow Who This Book Is For This book is ideal for data scientists who are familiar with C++ or Python and perform machine learning activities on a day-to-day basis. Intermediate and advanced machine learning implementers who need a quick guide they can easily navigate will find it useful. What You Will Learn Become familiar with the basics of the TensorFlow machine learning library Get to know Linear Regression techniques with TensorFlow Learn SVMs with hands-on recipes Implement neural networks and improve predictions Apply NLP and sentiment analysis to your data Master CNN and RNN through practical recipes Take TensorFlow into production In Detail TensorFlow is an open source software library for Machine Intelligence. The independent recipes in this book will teach you how to use TensorFlow for complex data computations and will let you dig deeper and gain more insights into your data than ever before. You'll work through recipes on training models, model evaluation, sentiment analysis, regression analysis, clustering analysis, artificial neural networks, and deep learning – each using Google's machine learning library TensorFlow. This guide starts with the fundamentals of the TensorFlow library which includes variables, matrices, and various data sources. Moving ahead, you will get hands-on experience with Linear Regression techniques with TensorFlow. The next chapters cover important high-level concepts such as neural networks, CNN, RNN, and NLP. Once you are familiar and comfortable with the TensorFlow ecosystem, the last chapter will show you how to take it to production. Style and approach This book takes a recipe-based approach where every topic is explicated with the help of a real-world example.

Machine Learning with Python Cookbook

Machine Learning with Python Cookbook PDF Author: Chris Albon
Publisher: "O'Reilly Media, Inc."
ISBN: 1491989335
Category : Computers
Languages : en
Pages : 366

View

Book Description
This practical guide provides nearly 200 self-contained recipes to help you solve machine learning challenges you may encounter in your daily work. If you’re comfortable with Python and its libraries, including pandas and scikit-learn, you’ll be able to address specific problems such as loading data, handling text or numerical data, model selection, and dimensionality reduction and many other topics. Each recipe includes code that you can copy and paste into a toy dataset to ensure that it actually works. From there, you can insert, combine, or adapt the code to help construct your application. Recipes also include a discussion that explains the solution and provides meaningful context. This cookbook takes you beyond theory and concepts by providing the nuts and bolts you need to construct working machine learning applications. You’ll find recipes for: Vectors, matrices, and arrays Handling numerical and categorical data, text, images, and dates and times Dimensionality reduction using feature extraction or feature selection Model evaluation and selection Linear and logical regression, trees and forests, and k-nearest neighbors Support vector machines (SVM), naïve Bayes, clustering, and neural networks Saving and loading trained models

TensorFlow Machine Learning Cookbook

TensorFlow Machine Learning Cookbook PDF Author: Nick McClure
Publisher: Packt Publishing Ltd
ISBN: 178913076X
Category : Computers
Languages : en
Pages : 422

View

Book Description
Skip the theory and get the most out of Tensorflow to build production-ready machine learning models Key Features Exploit the features of Tensorflow to build and deploy machine learning models Train neural networks to tackle real-world problems in Computer Vision and NLP Handy techniques to write production-ready code for your Tensorflow models Book Description TensorFlow is an open source software library for Machine Intelligence. The independent recipes in this book will teach you how to use TensorFlow for complex data computations and allow you to dig deeper and gain more insights into your data than ever before. With the help of this book, you will work with recipes for training models, model evaluation, sentiment analysis, regression analysis, clustering analysis, artificial neural networks, and more. You will explore RNNs, CNNs, GANs, reinforcement learning, and capsule networks, each using Google's machine learning library, TensorFlow. Through real-world examples, you will get hands-on experience with linear regression techniques with TensorFlow. Once you are familiar and comfortable with the TensorFlow ecosystem, you will be shown how to take it to production. By the end of the book, you will be proficient in the field of machine intelligence using TensorFlow. You will also have good insight into deep learning and be capable of implementing machine learning algorithms in real-world scenarios. What you will learn Become familiar with the basic features of the TensorFlow library Get to know Linear Regression techniques with TensorFlow Learn SVMs with hands-on recipes Implement neural networks to improve predictive modeling Apply NLP and sentiment analysis to your data Master CNN and RNN through practical recipes Implement the gradient boosted random forest to predict housing prices Take TensorFlow into production Who this book is for If you are a data scientist or a machine learning engineer with some knowledge of linear algebra, statistics, and machine learning, this book is for you. If you want to skip the theory and build production-ready machine learning models using Tensorflow without reading pages and pages of material, this book is for you. Some background in Python programming is assumed.

Scikit-Learn Cookbook - Second Edition

Scikit-Learn Cookbook - Second Edition PDF Author: Julian Avila
Publisher:
ISBN: 9781787286382
Category : Computers
Languages : en
Pages : 374

View

Book Description
Learn to use scikit-learn operations and functions for Machine Learning and deep learning applications.About This Book* Handle a variety of machine learning tasks effortlessly by leveraging the power of scikit-learn* Perform supervised and unsupervised learning with ease, and evaluate the performance of your model* Practical, easy to understand recipes aimed at helping you choose the right machine learning algorithmWho This Book Is ForData Analysts already familiar with Python but not so much with scikit-learn, who want quick solutions to the common machine learning problems will find this book to be very useful. If you are a Python programmer who wants to take a dive into the world of machine learning in a practical manner, this book will help you too.What You Will Learn* Build predictive models in minutes by using scikit-learn* Understand the differences and relationships between Classification and Regression, two types of Supervised Learning.* Use distance metrics to predict in Clustering, a type of Unsupervised Learning* Find points with similar characteristics with Nearest Neighbors.* Use automation and cross-validation to find a best model and focus on it for a data product* Choose among the best algorithm of many or use them together in an ensemble.* Create your own estimator with the simple syntax of sklearn* Explore the feed-forward neural networks available in scikit-learnIn DetailPython is quickly becoming the go-to language for analysts and data scientists due to its simplicity and flexibility, and within the Python data space, scikit-learn is the unequivocal choice for machine learning. This book includes walk throughs and solutions to the common as well as the not-so-common problems in machine learning, and how scikit-learn can be leveraged to perform various machine learning tasks effectively.The second edition begins with taking you through recipes on evaluating the statistical properties of data and generates synthetic data for machine learning modelling. As you progress through the chapters, you will comes across recipes that will teach you to implement techniques like data pre-processing, linear regression, logistic regression, K-NN, Naive Bayes, classification, decision trees, Ensembles and much more. Furthermore, you'll learn to optimize your models with multi-class classification, cross validation, model evaluation and dive deeper in to implementing deep learning with scikit-learn. Along with covering the enhanced features on model section, API and new features like classifiers, regressors and estimators the book also contains recipes on evaluating and fine-tuning the performance of your model.By the end of this book, you will have explored plethora of features offered by scikit-learn for Python to solve any machine learning problem you come across.Style and ApproachThis book consists of practical recipes on scikit-learn that target novices as well as intermediate users. It goes deep into the technical issues, covers additional protocols, and many more real-live examples so that you are able to implement it in your daily life scenarios.

Python Feature Engineering Cookbook

Python Feature Engineering Cookbook PDF Author: Soledad Galli
Publisher: Packt Publishing Ltd
ISBN: 1789807824
Category : Computers
Languages : en
Pages : 372

View

Book Description
Extract accurate information from data to train and improve machine learning models using NumPy, SciPy, pandas, and scikit-learn libraries Key Features Discover solutions for feature generation, feature extraction, and feature selection Uncover the end-to-end feature engineering process across continuous, discrete, and unstructured datasets Implement modern feature extraction techniques using Python's pandas, scikit-learn, SciPy and NumPy libraries Book Description Feature engineering is invaluable for developing and enriching your machine learning models. In this cookbook, you will work with the best tools to streamline your feature engineering pipelines and techniques and simplify and improve the quality of your code. Using Python libraries such as pandas, scikit-learn, Featuretools, and Feature-engine, you’ll learn how to work with both continuous and discrete datasets and be able to transform features from unstructured datasets. You will develop the skills necessary to select the best features as well as the most suitable extraction techniques. This book will cover Python recipes that will help you automate feature engineering to simplify complex processes. You’ll also get to grips with different feature engineering strategies, such as the box-cox transform, power transform, and log transform across machine learning, reinforcement learning, and natural language processing (NLP) domains. By the end of this book, you’ll have discovered tips and practical solutions to all of your feature engineering problems. What you will learn Simplify your feature engineering pipelines with powerful Python packages Get to grips with imputing missing values Encode categorical variables with a wide set of techniques Extract insights from text quickly and effortlessly Develop features from transactional data and time series data Derive new features by combining existing variables Understand how to transform, discretize, and scale your variables Create informative variables from date and time Who this book is for This book is for machine learning professionals, AI engineers, data scientists, and NLP and reinforcement learning engineers who want to optimize and enrich their machine learning models with the best features. Knowledge of machine learning and Python coding will assist you with understanding the concepts covered in this book.

Machine Learning for OpenCV 4

Machine Learning for OpenCV 4 PDF Author: Aditya Sharma
Publisher: Packt Publishing Ltd
ISBN: 1789537193
Category : Computers
Languages : en
Pages : 420

View

Book Description
A practical guide to understanding the core machine learning and deep learning algorithms, and implementing them to create intelligent image processing systems using OpenCV 4 Key Features Gain insights into machine learning algorithms, and implement them using OpenCV 4 and scikit-learn Get up to speed with Intel OpenVINO and its integration with OpenCV 4 Implement high-performance machine learning models with helpful tips and best practices Book Description OpenCV is an opensource library for building computer vision apps. The latest release, OpenCV 4, offers a plethora of features and platform improvements that are covered comprehensively in this up-to-date second edition. You'll start by understanding the new features and setting up OpenCV 4 to build your computer vision applications. You will explore the fundamentals of machine learning and even learn to design different algorithms that can be used for image processing. Gradually, the book will take you through supervised and unsupervised machine learning. You will gain hands-on experience using scikit-learn in Python for a variety of machine learning applications. Later chapters will focus on different machine learning algorithms, such as a decision tree, support vector machines (SVM), and Bayesian learning, and how they can be used for object detection computer vision operations. You will then delve into deep learning and ensemble learning, and discover their real-world applications, such as handwritten digit classification and gesture recognition. Finally, you’ll get to grips with the latest Intel OpenVINO for building an image processing system. By the end of this book, you will have developed the skills you need to use machine learning for building intelligent computer vision applications with OpenCV 4. What you will learn Understand the core machine learning concepts for image processing Explore the theory behind machine learning and deep learning algorithm design Discover effective techniques to train your deep learning models Evaluate machine learning models to improve the performance of your models Integrate algorithms such as support vector machines and Bayes classifier in your computer vision applications Use OpenVINO with OpenCV 4 to speed up model inference Who this book is for This book is for Computer Vision professionals, machine learning developers, or anyone who wants to learn machine learning algorithms and implement them using OpenCV 4. If you want to build real-world Computer Vision and image processing applications powered by machine learning, then this book is for you. Working knowledge of Python programming is required to get the most out of this book.

TensorFlow Machine Learning Cookbook - Second Edition

TensorFlow Machine Learning Cookbook - Second Edition PDF Author: Nick McClure
Publisher:
ISBN:
Category : R (Computer program language)
Languages : en
Pages : 422

View

Book Description
Skip the theory and get the most out of Tensorflow to build production-ready machine learning models Key Features Exploit the features of Tensorflow to build and deploy machine learning models Train neural networks to tackle real-world problems in Computer Vision and NLP Handy techniques to write production-ready code for your Tensorflow models Book Description TensorFlow is an open source software library for Machine Intelligence. The independent recipes in this book will teach you how to use TensorFlow for complex data computations and allow you to dig deeper and gain more insights into your data than ever before. With the help of this book, you will work with recipes for training models, model evaluation, sentiment analysis, regression analysis, clustering analysis, artificial neural networks, and more. You will explore RNNs, CNNs, GANs, reinforcement learning, and capsule networks, each using Google's machine learning library, TensorFlow. Through real-world examples, you will get hands-on experience with linear regression techniques with TensorFlow. Once you are familiar and comfortable with the TensorFlow ecosystem, you will be shown how to take it to production. By the end of the book, you will be proficient in the field of machine intelligence using TensorFlow. You will also have good insight into deep learning and be capable of implementing machine learning algorithms in real-world scenarios. What you will learn Become familiar with the basic features of the TensorFlow library Get to know Linear Regression techniques with TensorFlow Learn SVMs with hands-on recipes Implement neural networks to improve predictive modeling Apply NLP and sentiment analysis to your data Master CNN and RNN through practical recipes Implement the gradient boosted random forest to predict housing prices Take TensorFlow into production Who this book is for If you are a data scientist or a machine learning engineer with some knowledge of linear algebra, statistics, and machine learning, this book is for you. If you want to skip the theory and build production-ready machine learning models using Tensorflow without reading pages and pages of material, this book is for you. Some background in Python programming is assumed. Downloading the example code for this book You can download the example code files for all Packt books you have purchased from your account at http://www.PacktPub.com. If you purchased this book elsewhere, you can visit http://www.PacktPub.com/s ...

Hands-On Image Processing with Python

Hands-On Image Processing with Python PDF Author: Sandipan Dey
Publisher: Packt Publishing Ltd
ISBN: 178934185X
Category : Computers
Languages : en
Pages : 492

View

Book Description
Explore the mathematical computations and algorithms for image processing using popular Python tools and frameworks. Key Features Practical coverage of every image processing task with popular Python libraries Includes topics such as pseudo-coloring, noise smoothing, computing image descriptors Covers popular machine learning and deep learning techniques for complex image processing tasks Book Description Image processing plays an important role in our daily lives with various applications such as in social media (face detection), medical imaging (X-ray, CT-scan), security (fingerprint recognition) to robotics & space. This book will touch the core of image processing, from concepts to code using Python. The book will start from the classical image processing techniques and explore the evolution of image processing algorithms up to the recent advances in image processing or computer vision with deep learning. We will learn how to use image processing libraries such as PIL, scikit-mage, and scipy ndimage in Python. This book will enable us to write code snippets in Python 3 and quickly implement complex image processing algorithms such as image enhancement, filtering, segmentation, object detection, and classification. We will be able to use machine learning models using the scikit-learn library and later explore deep CNN, such as VGG-19 with Keras, and we will also use an end-to-end deep learning model called YOLO for object detection. We will also cover a few advanced problems, such as image inpainting, gradient blending, variational denoising, seam carving, quilting, and morphing. By the end of this book, we will have learned to implement various algorithms for efficient image processing. What you will learn Perform basic data pre-processing tasks such as image denoising and spatial filtering in Python Implement Fast Fourier Transform (FFT) and Frequency domain filters (e.g., Weiner) in Python Do morphological image processing and segment images with different algorithms Learn techniques to extract features from images and match images Write Python code to implement supervised / unsupervised machine learning algorithms for image processing Use deep learning models for image classification, segmentation, object detection and style transfer Who this book is for This book is for Computer Vision Engineers, and machine learning developers who are good with Python programming and want to explore details and complexities of image processing. No prior knowledge of the image processing techniques is expected.