**Author**: Robert N. Moll

**Publisher:**Springer

**ISBN:**

**Category :**Computers

**Languages :**en

**Pages :**224

**Book Description**

Theory of Computation -- Mathematical Logic and Formal Languages.

Skip to content
#
Help me go to College

## An Introduction to Formal Language Theory

**Author**: Robert N. Moll

**Publisher:** Springer

**ISBN:**

**Category : **Computers

**Languages : **en

**Pages : **224

**Book Description**

Theory of Computation -- Mathematical Logic and Formal Languages.

## Introduction to Formal Language Theory

**Author**: Michael A. Harrison

**Publisher:** Addison-Wesley

**ISBN:**

**Category : **Language Arts & Disciplines

**Languages : **en

**Pages : **622

**Book Description**

Formal language theory was fist developed in the mid 1950's in an attempt to develop theories of natural language acquisition. It was soon realized that this theory (particularly the context-free portion) was quite relevant to the artificial languages that had originated in computer science. Since those days, the theory of formal languages has been developed extensively, and has several discernible trends, which include applications to the syntactic analysis of programming languages, program schemes, models of biological systems, and relationships with natural languages.

## An Introduction to Formal Languages and Automata

**Author**: Peter Linz

**Publisher:** Jones & Bartlett Learning

**ISBN:** 9780763737986

**Category : **Computers

**Languages : **en

**Pages : **880

**Book Description**

Data Structures & Theory of Computation

## Introduction to Formal Languages, Automata Theory and Computation

**Author**: Kamala Krithivasan

**Publisher:** Pearson Education India

**ISBN:** 9788131723562

**Category : **Computable functions

**Languages : **en

**Pages : **446

**Book Description**

Introduction to Formal Languages, Automata Theory and Computation presents the theoretical concepts in a concise and clear manner, with an in-depth coverage of formal grammar and basic automata types. The book also examines the underlying theory and principles of computation and is highly suitable to the undergraduate courses in computer science and information technology. An overview of the recent trends in the field and applications are introduced at the appropriate places to stimulate the interest of active learners.

## An Introduction to Formal Languages and Automata

**Author**: Linz

**Publisher:** Jones & Bartlett Publishers

**ISBN:** 1284077241

**Category : **Medical

**Languages : **en

**Pages : **463

**Book Description**

Data Structures & Theory of Computation

## An Introduction to Formal Language Theory

**Author**: Robert N. Moll

**Publisher:** Springer Science & Business Media

**ISBN:** 146139595X

**Category : **Mathematics

**Languages : **en

**Pages : **203

**Book Description**

The study of formal languages and of related families of automata has long been at the core of theoretical computer science. Until recently, the main reasons for this centrality were connected with the specification and analy sis of programming languages, which led naturally to the following ques tions. How might a grammar be written for such a language? How could we check whether a text were or were not a well-formed program generated by that grammar? How could we parse a program to provide the structural analysis needed by a compiler? How could we check for ambiguity to en sure that a program has a unique analysis to be passed to the computer? This focus on programming languages has now been broadened by the in creasing concern of computer scientists with designing interfaces which allow humans to communicate with computers in a natural language, at least concerning problems in some well-delimited domain of discourse. The necessary work in computational linguistics draws on studies both within linguistics (the analysis of human languages) and within artificial intelligence. The present volume is the first textbook to combine the topics of formal language theory traditionally taught in the context of program ming languages with an introduction to issues in computational linguistics. It is one of a series, The AKM Series in Theoretical Computer Science, designed to make key mathematical developments in computer science readily accessible to undergraduate and beginning graduate students.

## Introduction to Formal Languages

**Author**: György E. Révész

**Publisher:** Courier Corporation

**ISBN:** 0486169375

**Category : **Mathematics

**Languages : **en

**Pages : **208

**Book Description**

Covers all areas, including operations on languages, context-sensitive languages, automata, decidability, syntax analysis, derivation languages, and more. Numerous worked examples, problem exercises, and elegant mathematical proofs. 1983 edition.

## Formal Languages and Computation

**Author**: Alexander Meduna

**Publisher:** CRC Press

**ISBN:** 1466513454

**Category : **Computers

**Languages : **en

**Pages : **318

**Book Description**

Formal Languages and Computation: Models and Their Applications gives a clear, comprehensive introduction to formal language theory and its applications in computer science. It covers all rudimental topics concerning formal languages and their models, especially grammars and automata, and sketches the basic ideas underlying the theory of computation, including computability, decidability, and computational complexity. Emphasizing the relationship between theory and application, the book describes many real-world applications, including computer science engineering techniques for language processing and their implementation. Covers the theory of formal languages and their models, including all essential concepts and properties Explains how language models underlie language processors Pays a special attention to programming language analyzers, such as scanners and parsers, based on four language models—regular expressions, finite automata, context-free grammars, and pushdown automata Discusses the mathematical notion of a Turing machine as a universally accepted formalization of the intuitive notion of a procedure Reviews the general theory of computation, particularly computability and decidability Considers problem-deciding algorithms in terms of their computational complexity measured according to time and space requirements Points out that some problems are decidable in principle, but they are, in fact, intractable problems for absurdly high computational requirements of the algorithms that decide them In short, this book represents a theoretically oriented treatment of formal languages and their models with a focus on their applications. It introduces all formalisms concerning them with enough rigors to make all results quite clear and valid. Every complicated mathematical passage is preceded by its intuitive explanation so that even the most complex parts of the book are easy to grasp. After studying this book, both student and professional should be able to understand the fundamental theory of formal languages and computation, write language processors, and confidently follow most advanced books on the subject.

## Introduction to Automata Theory, Languages, and Computation

**Author**: John E. Hopcroft

**Publisher:** Addison Wesley Longman

**ISBN:**

**Category : **Mathematics

**Languages : **en

**Pages : **544

**Book Description**

It has been more than 20 years since this classic book on formal languages, automata theory, and computational complexity was first published. With this long-awaited revision, the authors continue to present the theory in a concise and straightforward manner, now with an eye out for the practical applications. They have revised this book to make it more accessible to today's students, including the addition of more material on writing proofs, more figures and pictures to convey ideas, side-boxes to highlight other interesting material, and a less formal writing style. Exercises at the end of each chapter, including some new, easier exercises, help readers confirm and enhance their understanding of the material. *NEW! Completely rewritten to be less formal, providing more accessibility to todays students. *NEW! Increased usage of figures and pictures to help convey ideas. *NEW! More detail and intuition provided for definitions and proofs. *NEW! Provides special side-boxes to present supplemental material that may be of interest to readers. *NEW! Includes more exercises, including many at a lower level. *NEW! Presents program-like notation for PDAs and Turing machines. *NEW! Increas

## INTRODUCTION TO THEORY OF AUTOMATA, FORMAL LANGUAGES, AND COMPUTATION

**Author**: DEBIDAS GHOSH

**Publisher:** PHI Learning Pvt. Ltd.

**ISBN:** 8120348079

**Category : **Computers

**Languages : **en

**Pages : **260

**Book Description**

The Theory of Computation or Automata and Formal Languages assumes significance as it has a wide range of applications in complier design, robotics, Artificial Intelligence (AI), and knowledge engineering. This compact and well-organized book provides a clear analysis of the subject with its emphasis on concepts which are reinforced with a large number of worked-out examples. The book begins with an overview of mathematical preliminaries. The initial chapters discuss in detail about the basic concepts of formal languages and automata, the finite automata, regular languages and regular expressions, and properties of regular languages. The text then goes on to give a detailed description of context-free languages, pushdown automata and computability of Turing machine, with its complexity and recursive features. The book concludes by giving clear insights into the theory of computability and computational complexity. This text is primarily designed for undergraduate (BE/B.Tech.) students of Computer Science and Engineering (CSE) and Information Technology (IT), postgraduate students (M.Sc.) of Computer Science, and Master of Computer Applications (MCA). Salient Features • One complete chapter devoted to a discussion on undecidable problems. • Numerous worked-out examples given to illustrate the concepts. • Exercises at the end of each chapter to drill the students in self-study. • Sufficient theories with proofs.

Library of Full eBook Read and Download

Theory of Computation -- Mathematical Logic and Formal Languages.

Formal language theory was fist developed in the mid 1950's in an attempt to develop theories of natural language acquisition. It was soon realized that this theory (particularly the context-free portion) was quite relevant to the artificial languages that had originated in computer science. Since those days, the theory of formal languages has been developed extensively, and has several discernible trends, which include applications to the syntactic analysis of programming languages, program schemes, models of biological systems, and relationships with natural languages.

Data Structures & Theory of Computation

Introduction to Formal Languages, Automata Theory and Computation presents the theoretical concepts in a concise and clear manner, with an in-depth coverage of formal grammar and basic automata types. The book also examines the underlying theory and principles of computation and is highly suitable to the undergraduate courses in computer science and information technology. An overview of the recent trends in the field and applications are introduced at the appropriate places to stimulate the interest of active learners.

Data Structures & Theory of Computation

The study of formal languages and of related families of automata has long been at the core of theoretical computer science. Until recently, the main reasons for this centrality were connected with the specification and analy sis of programming languages, which led naturally to the following ques tions. How might a grammar be written for such a language? How could we check whether a text were or were not a well-formed program generated by that grammar? How could we parse a program to provide the structural analysis needed by a compiler? How could we check for ambiguity to en sure that a program has a unique analysis to be passed to the computer? This focus on programming languages has now been broadened by the in creasing concern of computer scientists with designing interfaces which allow humans to communicate with computers in a natural language, at least concerning problems in some well-delimited domain of discourse. The necessary work in computational linguistics draws on studies both within linguistics (the analysis of human languages) and within artificial intelligence. The present volume is the first textbook to combine the topics of formal language theory traditionally taught in the context of program ming languages with an introduction to issues in computational linguistics. It is one of a series, The AKM Series in Theoretical Computer Science, designed to make key mathematical developments in computer science readily accessible to undergraduate and beginning graduate students.

Covers all areas, including operations on languages, context-sensitive languages, automata, decidability, syntax analysis, derivation languages, and more. Numerous worked examples, problem exercises, and elegant mathematical proofs. 1983 edition.

Formal Languages and Computation: Models and Their Applications gives a clear, comprehensive introduction to formal language theory and its applications in computer science. It covers all rudimental topics concerning formal languages and their models, especially grammars and automata, and sketches the basic ideas underlying the theory of computation, including computability, decidability, and computational complexity. Emphasizing the relationship between theory and application, the book describes many real-world applications, including computer science engineering techniques for language processing and their implementation. Covers the theory of formal languages and their models, including all essential concepts and properties Explains how language models underlie language processors Pays a special attention to programming language analyzers, such as scanners and parsers, based on four language models—regular expressions, finite automata, context-free grammars, and pushdown automata Discusses the mathematical notion of a Turing machine as a universally accepted formalization of the intuitive notion of a procedure Reviews the general theory of computation, particularly computability and decidability Considers problem-deciding algorithms in terms of their computational complexity measured according to time and space requirements Points out that some problems are decidable in principle, but they are, in fact, intractable problems for absurdly high computational requirements of the algorithms that decide them In short, this book represents a theoretically oriented treatment of formal languages and their models with a focus on their applications. It introduces all formalisms concerning them with enough rigors to make all results quite clear and valid. Every complicated mathematical passage is preceded by its intuitive explanation so that even the most complex parts of the book are easy to grasp. After studying this book, both student and professional should be able to understand the fundamental theory of formal languages and computation, write language processors, and confidently follow most advanced books on the subject.

It has been more than 20 years since this classic book on formal languages, automata theory, and computational complexity was first published. With this long-awaited revision, the authors continue to present the theory in a concise and straightforward manner, now with an eye out for the practical applications. They have revised this book to make it more accessible to today's students, including the addition of more material on writing proofs, more figures and pictures to convey ideas, side-boxes to highlight other interesting material, and a less formal writing style. Exercises at the end of each chapter, including some new, easier exercises, help readers confirm and enhance their understanding of the material. *NEW! Completely rewritten to be less formal, providing more accessibility to todays students. *NEW! Increased usage of figures and pictures to help convey ideas. *NEW! More detail and intuition provided for definitions and proofs. *NEW! Provides special side-boxes to present supplemental material that may be of interest to readers. *NEW! Includes more exercises, including many at a lower level. *NEW! Presents program-like notation for PDAs and Turing machines. *NEW! Increas

The Theory of Computation or Automata and Formal Languages assumes significance as it has a wide range of applications in complier design, robotics, Artificial Intelligence (AI), and knowledge engineering. This compact and well-organized book provides a clear analysis of the subject with its emphasis on concepts which are reinforced with a large number of worked-out examples. The book begins with an overview of mathematical preliminaries. The initial chapters discuss in detail about the basic concepts of formal languages and automata, the finite automata, regular languages and regular expressions, and properties of regular languages. The text then goes on to give a detailed description of context-free languages, pushdown automata and computability of Turing machine, with its complexity and recursive features. The book concludes by giving clear insights into the theory of computability and computational complexity. This text is primarily designed for undergraduate (BE/B.Tech.) students of Computer Science and Engineering (CSE) and Information Technology (IT), postgraduate students (M.Sc.) of Computer Science, and Master of Computer Applications (MCA). Salient Features • One complete chapter devoted to a discussion on undecidable problems. • Numerous worked-out examples given to illustrate the concepts. • Exercises at the end of each chapter to drill the students in self-study. • Sufficient theories with proofs.