Advances in Atomic, Molecular, and Optical Physics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Advances in Atomic, Molecular, and Optical Physics PDF full book. Access full book title Advances in Atomic, Molecular, and Optical Physics by . Download full books in PDF and EPUB format.

Uncategorized

Worth A Thousand Words

Advances in Atomic, Molecular, and Optical Physics PDF Author:
Publisher: Academic Press
ISBN: 9780080554907
Category : Science
Languages : en
Pages : 498

Get Book

Book Description
Volume 55 of the Advances in Atomic, Molecular, and Optical Physics Series contains seven contributions, covering a diversity of subject areas in atomic, molecular and optical physics. In their contribution, Stowe, Thorpe, Pe’er, Ye, Stalnaker, Gerginov, and Diddams explore recent developments in direct frequency comb spectroscopy. Precise phase coherence among successive ultrashort pulses of a frequency comb allows one to probe fast dynamics in the time domain and high-resolution structural information in the frequency domain for both atoms and molecules. The authors provide a detailed review of some of the current applications that exploit the unique features of frequency comb spectroscopy and discuss its future directions. Yurvsky, Olshanii and Weiss review theory and experiment of elongated atom traps that confine ultracold gases in a quasi-one-dimensional regime. Under certain conditions, these quasi-one-dimensional gases are well-described by integrable one-dimensional many-body models with exact quantum solutions. Thermodynamic and correlation properties of one such model that has been experimentally realized are reviewed. DePaola, Morgenstein and Andersen discuss magneto-optical trap recoil ion momentum spectroscopy (MOTRIMS), exploring collisions between a projectile and target resulting in charged target fragments. MOTRIMS combines the technology of laser cooling and trapping of target atoms with the momentum analysis of the charged fragments that recoil from the target. The authors review the different MOTRIMS experimental approaches and the spectroscopic and collisional investigations performed so far. Safronova and Johnson give an overview of atomic many-body perturbation theory and discuss why extensions of the theory are needed. They present “all-order results based on a linearized version of coupled cluster expansions and apply the theory to calculations of energies, transition matrix elements and hyperfine constants. Another contribution on atomic theory, authored by Fischer, explores the advantages of expanding the atomic radial wave functions in a B-spline basis. The differential equations are replaced by non-linear systems of equations and the problems of orthogonality requirements can be dealt with using projection operators. Electron-ion collisional processes are analyzed by Mueller, including descriptions of the experimental techniques needed to obtain cross section data and typical values for these cross sections. The present status of the field is discussed in relation to the detailed cross sections and rate coefficients that are needed for understanding laboratory or astrophysical plasmas. Finally, Duan and Monroe review ways to achieve scalable and robust quantum communication, state engineering, and quantum computation. Using radiation and atoms, ions, or atomic ensembles, they show that they can construct scalable quantum networks that are inherently insensitive to noise. Progress in experimental realization of their proposals is outlined. International experts Comprehensive articles New developments

Advances in Atomic, Molecular, and Optical Physics

Advances in Atomic, Molecular, and Optical Physics PDF Author:
Publisher: Academic Press
ISBN: 9780080554907
Category : Science
Languages : en
Pages : 498

View

Book Description
Volume 55 of the Advances in Atomic, Molecular, and Optical Physics Series contains seven contributions, covering a diversity of subject areas in atomic, molecular and optical physics. In their contribution, Stowe, Thorpe, Pe’er, Ye, Stalnaker, Gerginov, and Diddams explore recent developments in direct frequency comb spectroscopy. Precise phase coherence among successive ultrashort pulses of a frequency comb allows one to probe fast dynamics in the time domain and high-resolution structural information in the frequency domain for both atoms and molecules. The authors provide a detailed review of some of the current applications that exploit the unique features of frequency comb spectroscopy and discuss its future directions. Yurvsky, Olshanii and Weiss review theory and experiment of elongated atom traps that confine ultracold gases in a quasi-one-dimensional regime. Under certain conditions, these quasi-one-dimensional gases are well-described by integrable one-dimensional many-body models with exact quantum solutions. Thermodynamic and correlation properties of one such model that has been experimentally realized are reviewed. DePaola, Morgenstein and Andersen discuss magneto-optical trap recoil ion momentum spectroscopy (MOTRIMS), exploring collisions between a projectile and target resulting in charged target fragments. MOTRIMS combines the technology of laser cooling and trapping of target atoms with the momentum analysis of the charged fragments that recoil from the target. The authors review the different MOTRIMS experimental approaches and the spectroscopic and collisional investigations performed so far. Safronova and Johnson give an overview of atomic many-body perturbation theory and discuss why extensions of the theory are needed. They present “all-order results based on a linearized version of coupled cluster expansions and apply the theory to calculations of energies, transition matrix elements and hyperfine constants. Another contribution on atomic theory, authored by Fischer, explores the advantages of expanding the atomic radial wave functions in a B-spline basis. The differential equations are replaced by non-linear systems of equations and the problems of orthogonality requirements can be dealt with using projection operators. Electron-ion collisional processes are analyzed by Mueller, including descriptions of the experimental techniques needed to obtain cross section data and typical values for these cross sections. The present status of the field is discussed in relation to the detailed cross sections and rate coefficients that are needed for understanding laboratory or astrophysical plasmas. Finally, Duan and Monroe review ways to achieve scalable and robust quantum communication, state engineering, and quantum computation. Using radiation and atoms, ions, or atomic ensembles, they show that they can construct scalable quantum networks that are inherently insensitive to noise. Progress in experimental realization of their proposals is outlined. International experts Comprehensive articles New developments

Advances in Atomic and Molecular Physics

Advances in Atomic and Molecular Physics PDF Author:
Publisher: Academic Press
ISBN: 9780080564814
Category : Science
Languages : en
Pages : 382

View

Book Description
Advances in Atomic and Molecular Physics

Advances in Atomic and Molecular Physics

Advances in Atomic and Molecular Physics PDF Author: Immanuel Estermann
Publisher:
ISBN:
Category : Atoms
Languages : en
Pages : 484

View

Book Description


Advances in Atomic, Molecular, and Optical Physics

Advances in Atomic, Molecular, and Optical Physics PDF Author:
Publisher: Elsevier
ISBN: 0080456081
Category : Science
Languages : en
Pages : 614

View

Book Description
Benjamin Bederson contributed to the world of physics in many areas: in atomic physics, where he achieved renown by his scattering and polarizability experiments, as the Editor-in-Chief for the American Physical Society, where he saw the introduction of electronic publishing and a remarkable growth of the APS journals, with ever increasing world-wide contributions to these highly esteemed journals, and as the originator of a number of international physics conferences in the fields of atomic and collision physics, which are continuing to this day. Bederson was also a great teacher and university administrator. The first part of this volume of Advances in Atomic, Molecular, and Optical Physics (AAMOP), entitled Benjamin Bederson: Works, Comments and Legacies, contains articles written from a personal perspective. His days at Los Alamos during World War II, working on the A bomb, are recounted by V. Fitch. H. Walther writes on the time when both were editors of AAMOP. H. Lustig, E. Merzbacher and B. Crasemann, with whom Bederson had a long-term association at the American Physical Society, contribute their experiences, one of them in the style of a poem. C.D. Rice recalls his days when he was Dean of the Faculty of Arts and Science at NYU, and the education in physics that he received from Bederson, then Dean of the Graduate School. The contribution by R. Stuewer is on Bederson as physicist historian (his latest interest). N. Lane draws some parallels between "two civic scientists, Benjamin Bederson and the other Benjamin". The papers are introduced by H.H. Stroke, in an overview of Bederson's career. A biography and bibliography are included. The second part of the volume contains scientific articles on the Casimir effects (L. Spruch), dipole polarizabilities (X. Chu, A. Dalgarno), two-electron molecular bonds revisited (G. Chen, S.A. Chin, Y. Dou, K.T. Kapale, M. Kim, A.A. Svidzinsky, K. Uretkin, H. Xiong, M.O. Scully, and resonance fluorescence of two-level atoms (H. Walther). J. Pinard and H.H. Stroke review spectroscopy with radioactive atoms. T. Miller writes on electron attachment and detachment in gases, and, with H. Gould, on recent developments in the measurement of static electric dipole polarizabilities. R. Celotta and J.A. Stroscio's most recent work on trapping and moving atoms on surfaces is contributed here. C.C. Lin and J.B. Borrard's article is on electron-impact excitation cross sections. The late Edward Pollack wrote his last paper for this volume, Atomic and Ionic Collisions. L. Vuskovic and S. Popovi ́c write on atomic interactions in a weakly ionized gas and ionizing shock waves. The last scientific article is by H. Kleinpoppen, B. Lohmann, A. Grum-Grzhimailo and U. Becker on approaches to perfect/complete scattering in atomic and molecular physics. The book ends with an essay on teaching by R.E. Collins. Benjamin Bederson - Atomic Physicist, Civil Scientist The Physical Review and Its Editor Los Alamos in World War II - View from Below Physics in Poetry Casimir Effects - Pedagogical Notes Atomic Physics in Collisions, Polarizabilities, Gases, Atomic Physics and Radioactive Atoms Molecular Bond Revisited Resonance Fluorescence in 2-Level Atoms Trapping and Moving Atoms on Surfaces

Advances in Atomic, Molecular, and Optical Physics

Advances in Atomic, Molecular, and Optical Physics PDF Author: Ennio Arimondo
Publisher: Academic Press
ISBN: 012385508X
Category : Science
Languages : en
Pages : 539

View

Book Description
Advances in Atomic, Molecular, and Optical Physics publishes reviews of recent developments in a field which is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered include related applied areas, such as atmospheric science, astrophysics, surface physics and laser physics. Articles are written by distinguished experts, and contain both relevant review material and detailed descriptions of important recent developments. International experts Comprehensive articles New developments

Advances in Atomic and Molecular Physics

Advances in Atomic and Molecular Physics PDF Author: David Robert Bates
Publisher:
ISBN:
Category : Atoms
Languages : en
Pages :

View

Book Description


Introduction to Atomic and Molecular Collisions

Introduction to Atomic and Molecular Collisions PDF Author: R. E. Johnson
Publisher: Springer Science & Business Media
ISBN: 1468484486
Category : Science
Languages : en
Pages : 302

View

Book Description
In working with graduate students in engineering physics at the University of Virginia on research problems in gas kinetics, radiation biology, ion materials interactions, and upper-atmosphere chemistry, it became quite apparent that there was no satisfactory text available to these students on atomic and molecular collisions. For graduate students in physics and quantum chemistry and researchers in atomic and molecular interactions there are a large number of excellent advanced texts. However, for students in applied science, who require some knowledge and understanding of col lision phenomena, such texts are of little use. These students often have some background in modern physics and/or chemistry but lack graduate level course work in quantum mechanics. Such students, however, tend to have a good intuitive grasp of classical mechanics and have been exposed to wave phenomena in some form (e. g. , electricity and magnetism, acoustics, etc. ). Further, their requirements in using collision processes and employing models do not generally include the use of formal scattering theory, a large fraction of the content of many advanced texts. In fact, most researchers who work in the area of atomic and molecular collisions tend to pride themselves on their ability to describe results using simple theoretical models based on classical and semiclassical methods.

Advances in Atomic, Molecular, and Optical Physics

Advances in Atomic, Molecular, and Optical Physics PDF Author: Susanne F. Yelin
Publisher: Academic Press
ISBN: 032398844X
Category : Science
Languages : en
Pages : 510

View

Book Description
Advances in Atomic, Molecular, and Optical Physics, Volume 71 provides a comprehensive compilation of recent developments in a field that is in a state of rapid growth as new experimental and theoretical techniques are used on many problems, both old and new. Topics covered include related applied areas, such as atmospheric science, astrophysics, surface physics, and laser physics, with timely articles written by distinguished experts. Sample content covered in this release includes Attosecond generation and application from X-ray Free Electron Lasers. Presents the work of international experts in the field Contains comprehensive articles that compile recent developments in a field that is experiencing rapid growth, with new experimental and theoretical techniques emerging Ideal for users interested in optics, excitons, plasmas and thermodynamics Covers atmospheric science, astrophysics, and surface and laser physics, amongst other topics

Atomic And Molecular Physics And Quantum Optics - Proceedings Of The Fifth Physics Summer School

Atomic And Molecular Physics And Quantum Optics - Proceedings Of The Fifth Physics Summer School PDF Author: Hans A Bachor
Publisher: World Scientific
ISBN: 9814554243
Category :
Languages : en
Pages : 560

View

Book Description
The articles discuss basic concepts and modern developments in atomic and molecular physics and quantum optics. Suitable for both theorists and experimentalists.

NIST Serial Holdings

NIST Serial Holdings PDF Author: National Institute of Standards and Technology (U.S.)
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages :

View

Book Description